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Abstract. A boundary-value problem is formulated describing the shapes of inflated and deflated axisymmetric
capsules enclosed by elastic membranes. When the membrane tension is isotropic and the principal bending
moments obey constitutive equations involving the principal curvatures in the reference and deformed state but not
the stretch ratios, the capsule shape is governed by a third-order ordinary differential equation for the meridional
curvature involving the difference between the internal and external pressure. Numerical solutions of the boundary-
value problem illustrate the shape of deflated spherical capsules enclosed by incompressible membranes and the
shape of inflated and deflated biconcave capsules resembling red blood cells. The results demonstrate that the
solution space of deformed spherical capsules consists of bifurcating branches arising at a sequence of transmural
pressures, and illustrate the pressure developing inside spherical and biconcave capsules when a certain amount of
fluid has been injected into, or withdrawn from, the interior.
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1. Introduction

Thin-shell theory provides us with a natural framework for describing the stationary shapes
and the flow-induced deformation of industrial capsules and biological cells. In this for-
mulation, the interfaces are regarded as distinct two-dimensional media embedded in three-
dimensional space, developing tangential and transverse tensions and bending moments due
to the deformation from a reference configuration. A variety of results may then be obtained
regarding the geometry of equilibrium shapes, and the stability and finite deformation under
the influence of a nonzero transmural pressure or due to the action of an externally imposed
viscous flow. For example, thin-shell theory has been used to explain the biconcave shape of
healthy red blood cells, to estimate the bending modulus of biological membranes aspirated
into a micropipette in terms of the suction length, to describe the deformed capsule shapes of
vesicles in various types of viscous flow, and to study the rheological properties of dispersions.

Of particular interest in this work are the equilibrium shapes of inflated and deflated
capsules with axisymmetric resting shapes. This problem has been discussed extensively in
the biomechanics literature with specific reference to the biconcave discoidal shape assumed
by resting healthy red blood cells (e.g., [1]). A focal point of this discussion has been the
question as to whether the natural biconcave shape is also a resting shape with vanishing
membrane tensions and bending moments. If the unstressed shape of the cells is spherical, or
if the membrane enclosing red blood cells has a tendency to become flat so as to minimize its
configurational energy, then the pressure inside the cells must be lower than that on the outside.
Even though the internal pressure is hard to measure in the laboratory and the origin of the
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Figure 1. Illustration of an axisymmetric membrane
showing the principal elastic tensions and bending
moments.

Figure 2. Contours of oblate and biconcave cells whose
curvature is given by Equation (2.8) with δ = 0
(sphere), 0·5, 1·0, 1·5, 2·0, and 2·3. The shapes have
been scaled so that the cells have the same surface area.

biconcave shape remains unclear, an understanding of the functional relationship between the
transmural pressure – defined as the difference between the interior cell and ambient pressure
– and the cell volume for given surface area is useful for elucidating this important aspect of
cell biomechanics.

Most relevant to this work are the computations of deflated and inflated capsules with
spherical and biconcave resting shapes by Zarda et al. [4], to be discussed in more detail in
Section 4. The numerical investigation of these authors appears to be the only theoretical study
of finite capsule deformation in hydrostatics. Our approach parallels theirs in the early stages
of the mathematical formulation by employing classical concepts of membrane or thin-shell
theory, but then deviates in several important ways.

First, we show that, when the membranes tensions are isotropic and the principal bending
moments obey constitutive equations involving the principal curvatures in the resting and
deformed state, but not the stretch ratios, the capsule shape is governed by a third-order
ordinary differential equation for the meridional curvature involving the transmural pressure.
Isotropic tensions develop when the free energy of the membrane is a strong function of the
rate of dilatation, as in the case of biological membranes consisting of lipid bilayers enclosing
red blood cells. The differential equation for axisymmetric capsules derived in this paper
is a generalization of that describing buckled shapes of two-dimensional (cylindrical) tubes
enclosed by inextensible shells. Second, we demonstrate that the solution space of spherical
resting capsules consists of bifurcated branches arising at a sequence of transmural pressures
and corresponding to difference circumferential modes. The possibility of multiple solutions
appears to have escaped the attention of previous authors. Third, we present accurate infor-
mation on the pressure developing inside a deformed capsule when a certain amount of fluid
has been injected into, or withdrawn from, the interior.
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The main limitation of the present approach is the restriction on the class of constitutive
equations for the elastic tensions and bending moments involving the curvatures. Although
a generalization at the expense of computational efficiency is possible, it appears unlikely
that capsules whose membrane material obeys different constitutive equations will show a
significantly different qualitative behavior.

2. Mathematical formulation

Consider a liquid capsule enclosed by an axisymmetric membrane generated by rotating a
curve around the x axis, and introduce polar cylindrical coordinates consisting of the axial
position x, the distance from the x axis denoted by σ , and the meridional angle measured
around the x axis with origin in the xy plane denoted by ϕ, as illustrated in Figure 1. The
fluid stresses inside and outside the capsule and the membrane tensions and bending moments
developing due to the deformation are all assumed to be axisymmetric.

Working under the auspices of thin-shell theory, we consider the mid-surface of the mem-
brane and introduce the azimuthal and meridional tensions τs and τϕ , which are the principal
tensions of the in-plane stress resultants, the transverse shear tension q exerted on a cross-
section of the membrane that is normal to the x axis, and the azimuthal and meridional bending
moments ms and mϕ , as depicted in Figure 1.

2.1. GEOMETRICAL PRELIMINARIES

To prepare the ground for the mathematical formulation, we introduce the arc length measured
along the contour of the membrane in a meridional plane, denoted by s, and the unit vector
that is tangential to the membrane and lies in a meridional plane defined by a certain value
of the meridional angle ϕ, denoted by ts . The unit vector normal to the membrane, n, points
outward, as illustrated in Figure 1. The principal curvatures of the membrane in a meridional
plane and its conjugate plane are denoted by κs and κϕ .

Using fundamental relations of differential geometry, we find that, if the radial position of
the membrane is described by the equations

σ = σ (s) = (x), (2.1)

then the principal curvatures are given by

κs = − ±σ ′′
√

1 − σ ′2 = − ±xx
(1 +2

s )
3/2

(2.2)

and

κϕ = − 1

σ

dx

ds
= ± 1

σ

√
1 − σ ′2 = ± 1

σ

1√
1 +2

x

, (2.3)

where σ ′ ≡ dσ/ds and x ≡ d/dx (e.g., [5, p. 162]). The plus sign of ± is selected when
dx/ds < 0, and the minus sign otherwise.

Expressions (2.2) and (2.3) are consistent with Codazzi’s equation

κs = d(σκϕ)

dσ
, (2.4)

which allows us to compute one of the principal curvatures in terms of the other (e.g., [6,
p. 9]). Rearranging (2.4), we obtain
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dκϕ
dσ

= κs − κϕ

σ
. (2.5)

Applying now (2.5) at the axis of symmetry, σ = 0, and using the rule de l’Hôspital to evaluate
the right-hand side, we obtain 2(dκϕ/ds)σ=0 = (dκs/ds)σ=0. Differentiating (2.5) with respect
to s and working in a similar fashion, we find 3(d2κϕ/ds2)σ=0 = (d2κs/ds2)σ=0.

To compute the contour of a capsule in terms of the curvature κs(s), we regard the x and
σ coordinates of point particles along the trace of the membrane in a meridional plane as
functions of the meridional arc length s, writing x = x1(s) and σ = σ (s) ≡ x2(s). By
definition then, x′2

1 + x′2
2 = 1, which can be differentiated to yield x′

1x
′′
1 = −x′

2x
′′
2 , where

a prime denotes a derivative with respect to s. Using elementary differential geometry, we
derive the relations

κs = −x′′
1x

′
2 + x′

1x
′′
2 = −x

′′
1

x′
2

= x′′
2

x′
1

. (2.6)

Next, we introduce the functions x3 ≡ x′
1 and x4 ≡ x′

2 satisfying x2
3 + x2

4 = 1, and obtain the
following system of four nonlinear differential equations,

dx1

ds
= x3,

dx2

ds
= x4,

dx3

ds
= −κsx4,

dx4

ds
= κsx3. (2.7)

The second pair of equations is decoupled from the first pair and can be integrated indepen-
dently. Once the solution has been found, the first pair can be integrated to produce the shell
shape.

For example, to compute an oblate or biconcave shape that is symmetric with respect to
the mid-plane x = 0, as illustrated in Figure 2, we may express the meridional curvature in
the form

κs = π

L
(1 − δ cos

πs

L
), (2.8)

where 0 ≤ s ≤ L, L is the total arc length of the cell contour in a meridional plane, and δ
is a specified dimensionless amplitude, and then integrate system (2.7) using, for example, a
Runge-Kutta method (e.g., [7]) with initial conditions

x1(0) = x0, x2(0) = 0, x3(0) = 0, x4(0) = 1, (2.9)

where x0 is an arbitrary position. Cell contours computed in this manner are displayed in
Figure 2 for δ = 0 (sphere), 0·5, 1·0, 1·5, 2·0, and 2·3, on a scale that has been adjusted so
that all cells have the same surface area. The shape for δ = 2·0 is similar to the average shape
of normal blood cells reported by Evans and Fung [8].

2.2. FORCE AND TORQUE BALANCES

Equilibrium equations can be derived by considering a small section of the membrane that
is confined between (a) two adjacent meridional planes passing through the x axis, and (b)
two parallel planes that are perpendicular to the x axis and enclose a small section of the
membrane in a meridional plane, as depicted in Figure 1. Performing a force balance over this
section, we find that the jump in the traction across the membrane is given by

�f = (σ (s) − σ (c)) · n = �f nn +�f sts , (2.10)
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where σ (s) is the stress tensor in the surrounding fluid, and σ (c) is the stress tensor inside the
cell. The normal jump is given by

�f n = κsτs + κϕτϕ − d

ds
(σq), (2.11)

and the tangential jump is given by

�f s = −dτs
ds

− 1

σ

dσ

ds
(τs − τϕ)− κsq

= − 1

σ

d(σ τs)

ds
+ τϕ

σ

dσ

ds
− κsq.

(2.12)

An analogous torque balance relates the transverse shear tension to the bending moments by

q = 1

σ

(
d(σms)

ds
−mϕ

dσ

ds

)
= 1

σ

dσ

ds

(
d(σms)

dσ
−mϕ

)
, (2.13)

(e.g., [6, p. 33]). Substituting the right-hand side of (2.13) in place of the shear tension in (2.11)
and (2.12), we obtain expressions for the jump in traction in terms of the in-plane tensions and
bending moments alone.

2.3. CONSTITUTIVE EQUATIONS FOR THE ELASTIC TENSIONS

To develop constitutive equations for the elastic tensions, we introduce the principal extension
ratios

λs = ds

dsR
, λϕ = σ

σR
, (2.14)

where the subscript R, subsequently also used as a superscript, denotes a reference state. If
the area of the membrane is locally and thus globally conserved, λsλϕ = 1. To this end, we
have two main choices reflecting the assumed nature of the membrane.

First, we may regard the membrane as a distinct two-dimensional elastic medium and ex-
press the principal stress resultants in terms of the surface strain energy function or Helmholtz
free surface energy WS . Alternatively, we may regard the membrane as a thin sheet of a three-
dimensional incompressible material, and express the principal stress resultants in terms of a
volume strain energy function WV . The proper choice depends on the membrane constitution.

2.4. CONSTITUTIVE EQUATIONS FOR THE BENDING MOMENTS

To compute the bending moments developing in an elastic membrane, we may introduce the
bending measures of strain

Ks = λsκs − κRs , Kϕ = λϕκϕ − κRϕ , (2.15)

(e.g., [4], [9–12]). The bending moments may then be expressed in terms of the surface
bending strain energy function WB as

ms = 1

λϕ

∂WB

∂Ks
, mϕ = 1

λs

∂WB

∂Kϕ
. (2.16)

Love’s first approximation is expressed by the quadratic form
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WB = 1

2
EB(K

2
s + 2νKsKϕ +K2

ϕ). (2.17)

Substituting (2.17) in (2.16), we find

ms = EB

λϕ
(Ks + νKϕ), mϕ = EB

λs
(Kϕ + νKs). (2.18)

The bending measures (2.15) have been designed so that self-similar deformations do not
induce bending moments; an example is provided by the expansion of a sphere. This choice
is appropriate for molecular membranes whose bending moments depend exclusively on the
solid angles of the molecular bonds. For membranes comprised of thin elastic sheets whose
thickness changes as a result of the deformation, we may replace the constitutive equations
(2.18) with the alternative linear relations

ms = EB(κs − κRs ), mϕ = EB(κϕ − κRϕ ). (2.19)

In the case of a spherical membrane with reference radius aR and deformed radius a, equations
(2.19) yield ms = mϕ = EB

aRλ
(1 − λ), where λ ≡ a/aR is the extension ratio. Note that the

bending moments are negative in the case of expansion and positive in the case of shrinkage.
An in-depth discussion of constitutive equations for the bending moments has been given

by Steigmann and Ogden [13–15].

2.5. CAPSULE SHAPES IN HYDROSTATICS

Consider now the equilibrium shape of a deformed axisymmetric capsule enclosed by an
elastic membrane in hydrostatics. When the effects of gravity are insignificant, the pressure
inside and outside the capsule is constant denoted, respectively, by pc and ps . Setting σ (s) =
−psI and σ (c) = −pcI, where I is the identity matrix, we find that the jump in hydrodynamic
traction across the membrane is given by �f = �ptn, where �pt ≡ pc −ps is the transmural
pressure. The equilibrium equations (2.11) and (2.12) require

κsτs + κϕτϕ −�pt = 1

σ

d(σq)

ds
(2.20)

and

d(σ τs)

ds
− τϕ

dσ

ds
= −σκsq, (2.21)

where the transverse shear tension q is given in terms of the bending moments by (2.13). In
the case of spherical capsule of radius a, equal principal curvatures κs = κϕ = 1/a and mean
curvature κm = 1/a, Equations (2.20) and (2.21) are clearly satisfied by Laplace’s formula
τs = τϕ = �pt/(2κm) and q = 0.

When the membrane tensions are isotropic, τs = τϕ = γ , Equations (2.20) and (2.21)
obtain the simplified forms

2γ κm = �pt + 1

σ

d(σq)

ds
,

dγ

ds
= −κsq, (2.22)

where κm = 1
2(κs + κϕ) is the mean curvature. Solving the first equation in (2.22) for γ and

substituting the result in the second equation, we obtain
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d

ds

[
1

2κm

(
1

σ

d(σq)

ds
+�pt

)]
+ κsq = 0. (2.23)

It is convenient for computational purposes to introduce the reduced tension w(s) ≡
γ (s)/EB satisfying the differential equation

dw

ds
= − 1

EB
κsq = − 1

EB

κs

σ

(
d(σms)

ds
−mϕ

dσ

ds

)
, (2.24)

where EB is a constant bending modulus. The right-hand side of (2.24) arises by expressing
the transverse shear tension in terms of the bending moments using the equilibrium equation
(2.13). The first of equations (2.22) yields

d(σq)

ds
+ σ�pt − 2EBκmσw(s) = 0. (2.25)

To this end, we adopt the constitutive equations (2.19), and recast (2.24) and (2.25) into
the more specific form

dw

ds
= −κs

σ

(
d[σ (κs − κRs )]

ds
− (κϕ − κRϕ )

dσ

ds

)
, (2.26)

and

d2[σ (κs − κRs )]
ds2

− d

ds
[(κϕ − κRϕ )

dσ

ds
] + σ

�pt

EB
− 2κmσw(s) = 0. (2.27)

Isolating the terms containing the reference curvatures on the right-hand side and rearranging,
we obtain

dw

ds
+ κs

(
dκs
ds

+ 1

σ

dσ

ds
(κs − κϕ)

)
= dw

ds
+ 2κs

dκm
ds

= κs

(
dκRs
ds

+ 1

σ

dσ

ds
(κRs − κRϕ )

)
,

(2.28)

d2(σκs)

ds2
− d

ds
(κϕ

dσ

ds
)+ σ

�pt

EB
− 2κmσw(s)

= (κRs − κRϕ )
d2σ

ds2
+ d(2κRs − κRϕ )

ds

dσ

ds
+ σ

d2κRs

ds2
.

(2.29)

The second expression in (2.28) was derived with the help of (2.5). When the reference shape
of the shell is a sphere of radius aR, κRs = κRϕ = 1/aR the right-hand sides of (2.28) and
(2.29) vanish, and the resulting simplified equations are distinguished by the absence of the
reference curvature.

Eliminating the reduced tension w(s) from (2.26) and (2.27), we obtain a third-order
differential equation for the curvatures with respect to the meridional arc length,

d

ds

[
1

2κmσ

(
d2[σ (κs − κRs )]

ds2
− d

ds
[(κϕ − κRϕ )

dσ

ds
] + σ

�pt

EB

)]

+κs
σ

(
d[σ (κs − κRs )]

ds
− (κϕ − κRϕ )

dσ

ds

)
= 0.

(2.30)
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Far from the axis of symmetry, κϕ and κRϕ tend to vanish, and (2.30) takes the simplified
asymptotic form

d

ds

[
1

κs

(
d2(κs − κRs )

ds2
+ �pt

EB

)]
+ κs

d(κs − κRs )

ds
= 0, (2.31)

involving only the meridional curvature in the deformed and reference state. Equation (2.31)
is the point of departure for computing the buckled shapes of two-dimensional (cylindrical)
cells under a negative transmural pressure e.g., [16, 17]).

Given the distribution of the reference curvatures around the deformed contour, κRs (s)
and κRϕ (s), Equations (2.2), (2.3), (2.7), (2.28) and (2.29) provide us with a complete sys-
tem of coupled ordinary differential equations for the functions x1(s), x2(s), x3(s), x4(s),
κs(s), κϕ(s), and w(s). An equivalent system of first-order equations arises by recalling the
definitions x = x1(s), σ = x2(s), denoting κs ≡ x5(s), dx5/ds ≡ x6(s), and w = x7(s), and
collecting the governing equations into the system

dxi
ds

= fi, (2.32)

for i = 1, . . . , 7. Using equation (2.3) to write κϕ = −x3/x2 and Codazzi’s equation (2.5) to
write dκϕ/ds = x4(x2x5 + x3)/x

2
2 , we find that the phase-space velocities are given by

f1 = x3, f2 = x4, f3 = −x5x4, f4 = x5x3, f5 = x6,

f6 = −2
x4x6

x2
+ (

x2
4

x2
2

− x3x5

x2
)(x5 + x3

x2
)− �pt

EB
+ (x5 − x3

x2
)x7

+(κRs − κRϕ )
x5x3

x2
+ x4

x2

(
2

dκRs
ds

− dκRϕ
ds

)
+ d2κRs

ds2
,

f7 = −x5[x6 + x4

x2
(x5 + x3

x2
)− dκRs

ds
− x4

x2
(κRs − κRϕ )].

(2.33)

The accompanying boundary conditions are: x1(0) = x0, x2(0) = 0, x3(0) = 0, x4(0) =
1, x6(0) = 0 at the axis of symmetry, s = 0 and σ = 0, where x0 is an arbitrary position along
the x axis. For shapes with left-to-right symmetry, such as those depicted in Figure 2, we also
require x4(L/2) = 0 and x6(L/2) = 0, where L is the total arc length of the contour of the
membrane in a meridional plane.

The expressions for the phase-space velocities f6 and f7 become indeterminate at the axis
of symmetry where σ ≡ x2 = 0. Careful consideration of the limit of the corresponding
differential equations assisted by Codazzi’s equations (2.4) and (2.5) shows that

f6(0) = −3

8

(
�pt

EB
− 2κs(0)x7(0)

)
+ 9

8

d2κRs

ds2
− 3

8

d2κRϕ

ds2
, f7(0) = 0. (2.34)

In the space of dimensionless functions, the solution of system (2.32) can be parametrized
by one of the dimensionless negative transmural pressures

�p̂L ≡ �pt

κ3
LEB

, �p̂S ≡ �pt

κ3
SEB

, �p̂V ≡ �pt

κ3
VEB

, (2.35)
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where κL = 1/aL is the mean curvature of the equivalent spherical shape whose perimeter P in
a meridional plane is equal to that of the capsule, P = πaL; κS = 1/aS is the mean curvature
of the equivalent spherical shape whose surface area S is identical to that of the capsule,
S = 4πa2

S ; and κV = 1/aV is the mean curvature of the equivalent spherical shape whose
volume V is same as that of the capsule, V = 4π

3 a
3
V . In practice, a family of solutions can

be found by specifying the perimeter L, the curvature of the capsule at the axis of symmetry,
x5(0), and the bending modulus, EB , and then solving the boundary-value problem by the
shooting method, where the trial variables are the transmural pressure and the initial value
x7(0).

A numerical method was implemented for solving system (2.32) by the fourth-order Runge-
Kutta method. The shooting variables were corrected by Newton’s method, and the 2 × 2
Jacobian was computed by numerical differentiation. The solution of the boundary-value
problem for each set of parameters requires only a few seconds of CPU time on a 1·7 GHz
Intel processor running LINUX. Because multiple solution branches exist for a specified
set of conditions, as will be discussed in Section 3, the converged capsule shape can be
extremely sensitive to the initial guesses for the transmural pressure and to the value of x7(0).
At high transmural pressures, parameter continuation with a very small step is necessary to
successfully trace a branch.

3. Results

Consider first the deformation of a capsule with a spherical resting shape. The solid lines in
Figure 3(a) show a family of oblate and dimpled deformed shapes for centerline curvature
aLκs(0) = 0·99, 0·95, 0·90, 0·80, . . . , −1·00, plotted on a scale that has been adjusted so
that all capsules have the same surface area. The continuation of this family to shapes with
lower negative centerline curvature yields unphysical self-intersecting capsules, as shown by
the dashed line in Figure 3(a) corresponding to aLκs(0) = −1·40. Half of these intersecting
shapes, however, can be identified with a deformed hemispherical cap fitted to the end of a
semi-infinite circular tube, buckling inward due to a difference between the low tube pressure
and high ambient pressure. Figure 3(b) shows a second family of deformed shapes with more
convoluted geometry for centerline curvature aLκs(0) = 0·98, 0·95, 0·90, 0·80, 0·60, . . . ,
−3·40, −3·60.

Figure 4 displays the volume of the first and second family of shapes drawn, respectively,
with thin and thick lines, plotted against the reduced centerline curvature aLκs(0). The solid
lines show the volume normalized by 4π

3 a
3
L, and the dashed lines show the volume normalized

by 4π
3 a

3
S . The information presented in this figure may be used to identify the shape of a

spherical capsule after a certain amount of fluid has been withdrawn from its interior with
a syringe, or diffused through the membrane. The results reveal that the volume of a cell
enclosed by an incompressible membrane with constant surface area, such as the membrane
of a vesicle enclosed by a lipid bilayer, decreases monotonically at a nearly quadratic rate with
respect to the deviation of the centerline curvature from the reference value.

Given the ambient pressure, the interior capsule pressure and thus the transmural pressure
is different for each one of the shapes displayed in Figure 3. Figure 5 shows a graph of the
negative of the reduced transmural pressure �p̂L (solid line) and �p̂S (dashed line) defined
in (2.35), plotted against the reduced centerline curvature aLκs(0). The results reveal that the
spherical shape corresponding to aLκs(0) = 1 is possible for any value of the transmural pres-
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Figure 3. Two families of deformed shapes of a capsule with spherical resting shape for reduced centerline
curvature (a) aLκs(0) = 0·99, 0·95, 0·9, 0·8, . . . , −1·0, and (b) 0·98, 0·95, 0·90, 0·80, 0·60, . . . , −3·40, −3·60.
The dashed line in (a) shows a self-intersecting shape with aLκs(0) = −1·40. The scale in both figures has been
adjusted so that all capsules have the same surface area.

sure. Bifurcations into the first and second family of deformed shapes displayed in Figure 3
occur at the critical points −(�p̂L)cr � −(�p̂S)cr = 8 and 36.

The structure of the solution space displayed in Figure 5 is similar to that of a cylindrical
elastic tube with a circular resting shape buckling inwards due to low tube pressure. In the case
of the tube, bifurcating solution branches are known to originate from the critical transmural
pressures − �pt

EBκ
3
u

≡ n2 − 1, where κu is the curvature of the undeformed shape and n is
the wave number of the circumferential mode (e.g., [2, 17, 18]). The two solution branches
displayed in Figure 3 correspond to the meridional modes n = 2 and 4. The present numerical
results suggest that the critical bifurcation points for a spherical cell are given by the formula
−(�p̂L)cr = 2(n2 + n− 2).

More direct information on the transmural pressure of deflated capsules is presented in
Figure 6, showing a graph of the negative of the transmural pressure �p̂S for the first and
second family of shapes, drawn, respectively, with the thin and thick line, plotted against the
capsule volume reduced so that all shapes have the same surface area. These results clearly
demonstrate that withdrawing an infinitesimal amount of fluid from the capsule causes the
intern al pressure to assume quantum levels according to the prevailing mode of deformation.
Although a rigorous proof is not available, the first mode corresponding to the biconcave shape
is most likely to occur in practice.

To compute deformed shapes of capsules with non-spherical resting shapes, we must have
available the distribution of the reference curvatures κRs (s) and κRϕ (s), where s is the arc
length around the deformed contour. In general, to obtain these functions, it is necessary
to introduce constitutive equations for the elastic tensions and simultaneously solve for the
principal extension ratios. Doing this considerably complicates the mathematical formulation
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Figure 4. Volume of the first (thin lines) and sec-
ond (thick lines) family of shapes displayed in Fig-
ure 3, plotted against the reduced centerline curvature
aLκs(0). The solid lines show the volume normal-
ized by 4π

3 a
3
L, and the dashed lines show the volume

normalized by 4π
3 a

3
S

.

Figure 5. The vertical axis measures the reduced cen-
terline curvature aLκs(0), and the horizontal axis mea-
sures the negative of the dimensionless transmural
pressure �p̂L (solid lines) or �p̂S (dashed lines) de-
fined in (2.35) for capsules with spherical undeformed
shapes.

Figure 6. Negative of the transmural pressure �p̂S plotted against the capsule volume for the first (thin line) and
second (thick line) family of deformed shapes displayed in Figure 3.

by introducing further terms containing the principal stretch ratios in the governing equations
(2.33).

As a compromise, we assume that λs = 1, and therefore κRs (s) = κRs (sR) and κRϕ (s) =
κRϕ (sR), whereupon the meridional arc lengths s and sR vary over the same range. Conversely,
this assumption may be regarded as an artificial constitutive equation that can be used to make
a correspondence between the position of point particles in the reference and deformed state.
When the incompressibility constraint λsλϕ = 1 is also required, λϕ = 1, and point particles
along the membrane are displaced parallel to the x axis.
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Figure 7. Deformed shapes of a capsule with a bi-
concave resting shape drawn with the heavy line.
The resting shape is described by Equation (2.8) with
δ = 2.

Figure 8. Dimensionless transmural pressure �p̂S
plotted against the reduced capsule volume for the
shapes depicted in Figure 7.

Figure 7 shows a family of deformed shapes for a capsule whose resting shape is described
by equation (2.8) with δ = 2, for centerline curvature aLκs(0) = −1·3, −1·2, −1·1 −1·0
(resting shape), −0·9, . . . , 0·50, 0·60. The scale has been adjusted so that the shapes displayed
have the same surface area. Figure 8 shows the dimensionless transmural pressure�p̂S plotted
against the capsule volume reduced by 4πa2

S , which is the maximum volume of a spherical
capsule with a given surface area. The undeformed shape corresponds to reduced volume of
0·614. In agreement with physical intuition, negative and positive values of the transmural
pressure occur, respectively, in the case of deflation or collapse. In particular, as a capsule
enclosed by an incompressible membrane is inflated, the internal pressure rapidly escalates
toward a large but most certainly finite limit.

4. Discussion

Zarda et al. [4] computed the shapes of deflated and inflated capsules with spherical and
biconcave resting shapes resembling red blood cells on the basis of the equilibrium equa-
tions (2.10)–(2.13) (see also [1]). Their transverse shear tension Q is the negative of the one
presently employed, Q = −q, and their equilibrium equations are written in terms of the
angle θ subtended between the x axis and the normal to the membrane defined such that
dσ/ds = cos θ and d/ds = cos θ(d/dσ ). In their formulation, the principal membrane
tensions are given in terms of isotropic and deviatoric components γ and γ ′, defined by the
equations τs = γ − γ ′ and τϕ = γ − γ ′. The isotropic tension is computed to satisfy the
inextensibility condition λsλϕ = 1, while the deviatoric component derives from a surface
strain-energy function WS as
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γ ′ ≡ 1

2
(τs − τϕ) = 1

2
(

1

λϕ

∂WS

∂λs
− 1

λs

∂WS

∂λϕ
). (4.1)

Previously, Skalak et al. [19] proposed the following strain energy function for the membrane
of a red blood cell,

WS = B

4
(
1

2
I 2

1 + I1 − I2)+ C

8
I 2

2 , (4.2)

where I1 ≡ λ2
s + λ2

ϕ − 2 and I2 ≡ λ2
s λ

2
ϕ − 1 are strain invariants, and B and C are physical

constants with estimated values on the order of B � 0·005 dyn/cm and C � 100 dyn/cm.
The large magnitude of the constant C compared to that of B ensures that a small deviation of
I2 from unity generates large elastic tensions; consequently, the membrane is nearly incom-
pressible and the tensions are nearly isotropic. To compute equilibrium shapes, Zarda et al.
[4] traced the membrane contour with marker points and solved the governing equations in an
indirect fashion by minimizing a properly constructed energy functional using a finite-element
method.

Zarda et al. [4] computed shapes of deflated spherical capsules that are qualitative similar
with those depicted in our Figure 3(a) (their Figure 8), and presented a graph of the transmural
pressure against the capsule volume, as shown in our Figure 6 (their Figure 9). Their results
suggest that the transmural pressure diverges to infinity as the reduced volume approaches
unity, which means that, if an infinitesimal amount of fluid is withdrawn from the capsule,
the internal capsule pressure immediately becomes very large and possibly infinite. This is in
contrast with the present results and defies physical intuition.

The results presented in our Figure 7 and 8 are qualitatively similar with those presented
in Figures 4 and 5 of Zarda et al. [4] for sphered red blood cells. In their Table 1, these
authors list the cell volume and transmural pressure for surface area 141·6 µm2. The reduced
volume of the undeformed shape is 0·58, which is close to the value 0·614 corresponding to
the cell depicted in the present Figure 7. Our computations show that, at the reduced volume
0·92, �p̂S � 14·5. Taking as as = 3·36 µm, corresponding to surface area 141·6 µm2, and
EB = 10−12 dyn cm, we find the transmural pressure 0·38 dyn cm2. Considering the important
differences in the constitutive equations for the bending moments and in the assumed resting
shapes, this prediction is reasonably close to the value 3·6 dyn/cm2 reported by the previous
authors [4].

In conclusion, we have formulated a boundary-value problem describing the deformation
of axisymmetric capsules enclosed by incompressible membranes developing isotropic ten-
sions due to the deformation from a reference configuration. The constitutive equation for the
bending moments was selected so that the principal stretches do not appear in the third-order
differential equation for the meridional and azimuthal curvatures in the deformed state. This
particular choice, motivated by significant advantages in computational efficiency, is perhaps
the most important limitation of the present approach. The development of similar models
culminating in computationally amenable elliptic boundary-value problems describing the
deformed state of three-dimensional capsules and shells is under current investigation.
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